

Solar Cooling Systems the clean energy solution that saves money

TVP Solar Cooling System - Designed for Datacenters; Warehouses; Commercial; Industries; Hospitals

Solar Cooling Systems measurable results - savings

System description

Location (-	Gulf Countries		
Solar field operating	T 165	$^{\circ}C$	
Solar field size	5350	m^2	
Solar Cooling Power	1000	TR	
Electricity saved	1952	MWh _e /y	
CO ₂ saved	1171	ton/year	

Solar Cooling Systems MT-Power Collectors – Best Solar Thermal

Best efficiency and energy output in any climate conditions, with any irradiance, at any operating temperature up to 200C Comparison with the most popular flat and evacuated collectors (SolarKeymark certified data)

Solar Cooling Systems will produce cooling. no matter what

Solar Cooling Systems value proposition

Reduced operating costs

Lower cost of MWh_{cool} compared to fossil fuels or electricity

Sustainability

Cut CO₂
Meet Corporate Sustainability Goals

Off Grid Peak Relief

Reduces power demand from the grid at peak times (and prices)

Solar Cooling Systems track record

Agility building – Sulabiya - Kuwait

Installed Cooling Power 34 TR Chiller COP (Thermax) 1.1 Energy production MWh_{cool}/y 240 165 Operating T Installed since Feb 2017 Collector surface 234 Electricity saved/year 120 Mwh Cost of cooling energy 76 \$/MWh_{cool}

GHI (kWh/m²/y) 1957 Solar avg. system eff. 43% Working Hours daytime Storage no

Solar Cooling Systems optimal process integration

Absorption Chiller

Solar Cooling Systems measurable results

typical setup

expected performance

Collectors gross area

 3000 m^2

Cooling production

2700-3300 MWh_{cool} (2E@ 165C)

Footprint

5400 m²

Fuel Savings

900-1100 MWh_e per year

Peak Cooling Power

600 TR / 2100 kW_{cool}

Emission reductions

80-90 t/CO₂ removed

Solar Cooling Systems economics. real value

typical setup

Collectors gross area

 $3,000 \text{ m}^2$

Footprint

5,400 m²

2E Absorption Chiller

 $600 \, \mathrm{TR} \, / \, 2100 \, \mathrm{kW}_{\mathrm{cool}}$

Possible optimizations

significant economies for large scale

include subsidies

cost baseline

Solar CAPEX

1′501′500 €

Solar OPEX

9′300 €/y

Chiller OPEX

5′600 €/y

Cost of Cooling

14€/MWh_{cool}

Economic assumptions

OPEX includes O&M, electricity, spares

solar plant lifetime: 25 y

LET'S APPROACH YOUR CASE WITH A QUICK SIMULATION